Convergence Rate Analysis for Averaged Fixed Point Iterations in Common Fixed Point Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence rate analysis for averaged fixed point iterations in the presence of Hölder regularity

In this paper, we establish sublinear and linear convergence of fixed point iterations generated by averaged operators in a Hilbert space. Our results are achieved under a bounded Hölder regularity assumption which generalizes the well-known notion of bounded linear regularity. As an application of our results, we provide a convergence rate analysis for Krasnoselskii– Mann iterations, the cycli...

متن کامل

A strong convergence theorem for solutions of zero point problems and fixed point problems

Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces‎.

متن کامل

Fixed Point Iterations

Recall that a vector norm on R is a mapping ‖·‖ : R → R satisfying the following conditions: • ‖x‖ > 0 for x 6= 0. • ‖λx‖ = |λ|‖x‖ for x ∈ R and λ ∈ R. • ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ R. Since the space Rn×n of all matrices is also a vector space, it is also possible to consider norms there. In contrast to usual vectors, it is, however, also possible to multiply matrices (that is, the matric...

متن کامل

Some fixed point theorems and common fixed point theorem in log-convex structure

Some fixed point theorems and common fixed point theorem in Logarithmic convex structure areproved.

متن کامل

Regularized Fixed-Point Iterations for Nonlinear Inverse Problems

In this paper we introduce a derivative-free, iterative method for solving nonlinear illposed problems Fx = y, where instead of y noisy data yδ with ‖y − yδ‖ ≤ δ are given and F : D(F ) ⊆ X → Y is a nonlinear operator between Hilbert spaces X and Y . This method is defined by splitting the operator F into a linear part A and a nonlinear part G, such that F = A + G. Then iterations are organized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2017

ISSN: 1052-6234,1095-7189

DOI: 10.1137/15m1045223